Genetic polymorphisms of the XPG and XPD nucleotide excision repair genes in sarcoma patients.
نویسندگان
چکیده
There are more than 50 subtypes of soft tissue sarcomas, among which 30% are associated with specific genetic alterations, including translocations. Several studies have reported associations between cancer risk and polymorphisms of DNA repair genes from the nucleotide excision repair (NER) pathway. NER involves more than 20 proteins whose inactivation leads to xeroderma pigmentosum (XP) or cockayne syndrome (CS), among which XPD, a helicase allowing DNA strand excision by the endonuclease XPG. DNA from 93 patients with synovial sarcomas, myxoid liposarcomas, dermatofibrosarcomas protuberans (DFSP), malignant fibrous histiocytomas and leiomyosarcomas were genotyped for both XPD Lys751Gln and XPG Asp1104His polymorphisms. Departure from Hardy-Weinberg was highly significant for the XPG polymorphism with an excess of heterozygotes in synovial sarcomas (p = 1.5 x 10(-5)), myxoid liposarcomas (p = 1.5 x 10(-4)) and to a lesser extent in DFSP (p = 0.028). In the case of XPD, a significant deviation was observed in synovial sarcomas (p = 3 x 10(-6)) and DFSP (p = 0.0014). When tumors were pooled according to their genetic alterations, the proportion of carriers of the variant XPG allele was significantly increased in sarcomas with specific translocations as compared to sarcomas with complex genetics (p < 10(-9)). No difference was found for XPD. Genotyping of the tumor samples in synovial sarcomas and myxoid liposarcomas revealed frequent loss of heterozygosity for XPG, mostly due to the loss of the frequent allele. For XPD, both alleles were lost with a similar frequency. Our results raise the potential implication of the XPG Asp1104His polymorphism in the occurrence of chromosomal translocations associated with specific subtypes of sarcomas.
منابع مشابه
Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis.
Sunlight causes DNA damage, including bulky lesions that are removed effectively by the nucleotide-excision repair (NER) pathway. There are at least eight core NER proteins participating in the pathway, and genetic variations in their genes may alter NER functions. We hypothesized that some NER variants are associated with risk of cutaneous melanoma. In a hospital-based case-control study of 60...
متن کاملPolymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study.
Polymorphisms in six genes involved in nucleotide excision repair of DNA were examined in a large population-based case-control study of melanoma. Genotyping was conducted for 2485 patients with a single primary melanoma (controls) and 1238 patients with second or higher order primary melanomas (cases). Patients were ascertained from nine geographic regions in Australia, Canada, Italy and the U...
متن کاملEffect of occupational exposure to cytostatics and nucleotide excision repair polymorphism on chromosomal aberrations frequency
Authors evaluated the incidence of total chromosomal aberrations (CA) and their types - chromatid-type (CTA) and chromosome-type (CSA) in peripheral blood lymphocytes from 72 oncologic unit's workers occupationally exposed to cytostatics in relationship to polymorphisms of DNA repair genes XPD, XPG and XPC. The cytogenetic analysis was used for determination of chromosomal aberrations frequency...
متن کاملGenetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA.
We analysed the associations between genetic polymorphisms in genes coding for DNA repair enzymes XPD (exon 23 A --> C, K751Q), XPG (exon 15 G --> C, D1104H), XPC (exon 15 A --> C, K939Q), XRCC1 (exon 10 G --> A, R399Q) and XRCC3 (exon 7 C --> T, T241 M) and the levels of chromosomal aberrations (CAs) and single-strand breaks (SSBs) in peripheral lymphocytes in a central European population. We...
متن کاملSusceptibility of XRCC3, XPD, and XPG genetic variants to cervical carcinoma.
OBJECTIVE DNA repair genes play a key role in maintaining genomic stability and integrity. DNA repair gene polymorphisms, such as those of XRCC3 and xeroderma pigmentosum, complementation group D and G (XPD, XPG), contribute to carcinogenesis. In this study, we investigated the correlation between cervical carcinoma risk and XRCC3, XPD, XPG genetic variants. METHODS A case-control study of 40...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of cancer
دوره 119 7 شماره
صفحات -
تاریخ انتشار 2006